Indoor lights could soon power smart devices


Wednesday, 11 March, 2020


Indoor lights could soon power smart devices

A new type of indoor solar cell is being developed for use in smart connected devices.

According to researchers from Uppsala University, these dye-sensitised solar cells are able to harvest light from indoor lamps, removing the need for wires and batteries.

It is estimated that by 2025, many facets of our lives will be mediated through Internet of Things (IoT) devices, a majority of which will be located indoors. Broad installation of such IoT devices requires the devices to become autonomous, meaning that they should no longer need batteries or a grid connection to operate. To achieve this, it is crucial to identify a local low-maintenance energy source that can provide local power to IoT devices, especially in ambient conditions.

Working towards this goal, a research team led by Marina Freitag, assistant professor at the Department of Chemistry, Uppsala University, has developed new indoor photovoltaic cells that can convert up to 34% of visible light into electricity to power a wide range of IoT sensors. The team has designed novel dye-sensitised photovoltaic cells based on a copper-complex electrolyte, which makes them suitable for harvesting indoor light from fluorescent lamps and LEDs. The latest promising results establish dye-sensitised solar cells as leaders in power conversion efficiency for ambient lighting conditions, outperforming conventional silicon and solar cells made from exotic materials.

The research could revolutionise indoor digital sensing for smart greenhouses, offices, shelves, packages and many other smart everyday objects for the Internet of Things.

"Knowing the spectra of these light sources makes it possible to tune special dyes to absorb indoor light. While generating large amounts of energy, these indoor photovoltaics also maintain a high voltage under low light, which is important to power IoT devices," Freitag said.

In cooperation with the Technical University of Munich, the researchers have further designed an adaptive 'power management' system for solar-powered IoT sensors. In contrast to their battery-limited counterparts, the light-driven devices intelligently feed from the amount of light available. Computational workloads are executed according to the level of illumination, minimising energy losses during storage and thus using all light energy to the maximum of its availability. Combining artificial intelligence and automated learning, the solar cell system can thus reduce energy consumption and battery waste, and help to improve general living conditions.

In the future, scientists expect that billions of IoT devices self-powered by indoor solar cells will provide everything from environmental information to human-machine and machine-machine communications. Such advanced sensors can further enhance the next wave of robotics and autonomous systems currently in development.

"Ambient light harvesters provide a new generation of self-powered and smart IoT devices powered by an energy source that is largely untapped. The combination of high efficiency and low cost with non-toxic materials for indoor photovoltaics is of paramount importance to IoT sustainability," Freitag said.

The research was published in Chemical Science.

Image credit: ©stock.adobe.com/au/Production Perig

Related Articles

What Australia thinks about the energy transition

A CSIRO survey has canvassed more than 6700 people in all states and territories, across capital...

NZ has reached the 'electrification tipping point' — where to now?

New Zealand is one the of the first countries in the world where electric appliances and vehicles...

Finding one faulty solar panel in a sea of millions

Up until now, finding faults in individual panels on a solar farm has been a time-consuming and...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd